
SOFTWARE
TESTING

T8

200310548 이정우

200911364 곽수미

200911372 김민하

200911373 김바울

Contents

 Introduction

 Types of tests

 Test Levels

 Testing Strategies

 Test Design

 Test Coverage

 Test Execution

 Test Documentation

 Test Management

Introduction

 Definition in IEEE Standard 610.12

- To conduct an activity in which a system or component

is executed under specified conditions, the results are

observed or recorded, and an evaluation is made of

some aspect of the system or component.

- A set of one or more test** cases and/or procedures.

 “Test” means

- All of / A part of the activity

- All of / A part of the product the activity

Types of tests

 The SWEBOK provides a list of Types of tests.

- The software engineer’s intuition and experience

- Specifications

- Code

- Dataflow

- Fault

- Usage

- The nature of the application

Types of tests

 The most commonly used types of tests.

- Equivalence class partitioning

- Boundary value

- Decision table

- Exploratory

- Operational profile

Equivalence class partitioning

 To examines the defined acceptable range for

each input to determine the following classes for

each input.

- Valid(s) : continuous range or list of values that should

be legal and processed successfully by code.

- Invalid(s) : continuous range or list of values that should

be illegal and not accepted by the software, but not

cause an acceptable result, either.

Equivalence class partitioning

 An example : The age of an individual

- The valid range could be 0 to 120

 Equivalence classes :

- Valid : {0-120}

- Invalid : {<0} and {>120}

Equivalence class partitioning

 The steps

- Define the valid and invalid class for each input.

- Test as many of the valid classes together as possible.

- Do one test for each invalid classes.

Boundary value testing

 Mandates the testing of four values for each input

- The legally defined minimum

- The legally defined maximum

- The first possible value below the legally defined minimum

- The first possible value above the legally defined maximum

Boundary value testing

 An example : The age of an individual

- The legally defined minimum : 0

- The legally defined maximum : 120

- The first possible value below the legally defined minimum : -1

- The first possible value above the legally defined maximum : 121

 It can be applied for the length of the field for

nonnumeric inputs.

Decision table

 To cover all possible combinations of the input

conditions in the tests.

- Lists the all possible conditions and actions in the first

column of a table

- There is a column or “rule” for every possible

combination of input conditions.

·A particular input condition is marked with a Y for yes, an N for no,

or an I for immaterial (both yes and no)

Decision table

 An example : For computing U.S. payroll tax withholding

Exploratory testing

- Not require preplanning of exact data values

- Planning the focus the testing process

- Not mandatory to stick to the plan

- The tester reacts to the results being produced

and modifies the plan accordingly.

· For example, if many problems are being discovered with

a particular aspect of the system, more tests are created

for that area.

Operational profile

 To test more for the features that are used more.
- As a result, achieve more robustness of the software

- Recommends that the number of tests run for each

system feature follow the model of how much it is used

during operation

- Actual usage may be measured

- Useful for a regression test

Test levels

 Testing is done at more than one level.

- Because, a software product is being developed or maintained

 Testing levels vary

- To the scope of software being tested

- The test techniques, objectives, environment

 Testing level schemes start with the smallest scope

to be tested and increase in scope.

Test levels

 Some organizations also have multiple levels of

test for the entire system product.

- For example, security, performance, usability etc.

 The number and types of test levels vary from

organization to organization and even with

projects within one organization.

 Any one of these levels may have multiple level

within it.

Test levels

 Main factors that effect the number and types of
levels

- System size

- Complexity

- Safety criticality

- The experience of the testing staff and management

- The degree of desire for certification

 Each organization makes its own decision about

how many levels of test to have, and improves it

if the goals of the organization are not being met.

Test levels

 Definition of test levels in IEEE/EIA 12207.0.

- Different processes have different testing level needs.

 The acquisition process

- The acquirer checks that all of the predefined

acceptance conditions are met

Test levels

 The development process

- Each software unit and database

- Integrated units and components

- Tests for each software requirement

- Software qualification testing for all requirements

- System integration

- System qualification testing for system requirement

Test levels

 The operation process

- operational testing

 The maintenance process

- All development levels for improvements and adaptation

- Test the modified parts of the system

- Test the unmodified parts

- Migration verification

- Possibly also parallel testing

Test levels

 The supporting process

- Verification

· The software products of a specific activity successfully

implements the requirements of the immediately prior

activity

- Validation

·The final, as-built software or system product meets all of the

requirement

Test levels

 Definition test levels in The SWEBOK

- Unit testing verifies the functioning in isolation of

software pieces which are separately testable.

- Integration testing is the process of verifying the

behavior of a whole system.

- System testing is concerned with the behavior of

a whole system.

Testing strategies

 Reflects the priorities of the organization

 Leads to the emphasis and coverage goals for

the test cases themselves

 Focused on either “macro” or “micro” test issues

Test strategy issues - Macro

 Time-to-market

- Speed of test development and execution

 Amount of functionality to be delivered

- And as a result, tested

 Quality of the product

- thoroughness of the testing

- >These three issues are trade-offs.

Test strategy issue - Macro

 Most organizations want all three.

-> Therefore, Strategy creates priorities for

the selection and management of all test

activities.

Test strategy issue - Macro

 Another “macro”

- The desire for the cost of all development and

maintenance of all test activities to meet expectations.

- Role in supporting the organization’s business goals

Test strategy issues - Micro

 Focused on test processes and products

 Some examples (support “macro” strategies)

- For reduction of time to market

· More automation to speed test execution

· Fewer turnovers in testing staff to minimize time for learning curves

· Better selection of the test cases that are executed, to find the more

serious problems earlier

Test strategy issue - Micro

- For functionality changes

· Tracing from requirements to test cases to enable finding the cases

affected by the changes quickly

· Smaller, more modular test scripts to maximize reuse during

changes in functionality

- For quality of the product

· Better tools to measure current test coverage

· Better unit test tools for developers

·More variety in the test types

Test strategy issue - Micro

- To control test effort costs

· Use a project management tool to estimate test activities and to

track the actual expenditures

· Add root cause analysis(RCA) to test readiness review meeting

Test design

 Test design = Art + Science

 The goal of test design

- To get the most return with the least effort!

 A good test design includes

- Both structured and unstructured techniques

Unstructured techniques

- Random

- Ad hoc

·Performed without planning and documentation

· A part of exploratory testing

·Intended to be run only once, unless a defect is discovered

- Exploratory

 Advantage

- Find lots of problems, often quite serious

Structured techniques

- Equivalence class partitioning

- Boundary value

- Decision table

 Advantage

- Provide linear coverage

· All attributes are tested to the same degree in exactly the same

manner.

Test coverage of code

 Measuring how much a software program has

been exercised by tests(code).

 The goal for coverage of code during testing

will vary with the level of test.

Test coverage of code

 Ways to define – code was “Covered”

- To count it as covered if it was executed in any part

- Count physical line of code of logical line of code

 The most robust definition is to use logical lines

of code with 100% coverage.

- To call out a need for execution of every condition

- Calls for 100% of all possible paths for execution

Test coverage of code

 A universally recognized technique for achieving

100% coverage.

- > Tom McCabe’s Basis Path Testing technique

- The goal is 100% condition coverage, but not every

possible path.

Tom McCabe’s Basis Path testing

 The steps

- Draw a flowgraph

·Each logical statement (node) : circle

·The transfer of control as a result of

decisions (edges) : arrows

- Compute the metric cyclomatic

complexity

·Count the number of regions

· number of edges – number of nodes + 2

- Choose the paths

Tom McCabe’s Basis Path testing

 Actual complexity

- To test all of the nodes and edges with fewer than the

cyclomatic complexity number of paths.

 Cyclomatic complexity

- Included on certification exams in one form or another

- One of the few aspects of software engineering that

produces a numerical answer.

- provides an easily deterministic exam question and

answer

·

Test coverage of specifications

 Traceability matrix

- If the contents of a specification have been inventoried

in some manner.

- After completed, each requirement can be traced to the

test cases where it is exercised by filling in a column in

the table identifying these cases.

- The tracing has been completed, it is possible to

compute the % requirements tested or a similar metric.

Test execution

 The needs for the test execution are specified

in the Test Plan.

- Specifies every component of the test environment,

hardware, software, automated tools, data, personnel

 All of the actual test input and procedure are

specified in test cases and test procedures.

- Need to be documented with enough clarity

- Another individual can replicate the results

Test execution

 The test results are logged during execution

following the test plan, including an evaluation

as to the success or failure of each test cases.

 Incident reports are recorded during test

execution to allow both the developer and

subsequent tester of the repaired code to

reproduce the original problem.

Test execution

 Testing may not go according to plan.

- Test execution is adapting to unplanned changes

 “Test Director” or “Test Coordinator”

- To adapt to the changes from the plan

- To redirect the total test execution effort

 When the test execution is completed

- the results are documented in the test summary report.

Test documentation

 Test documentation is recorded in media.

- Example : word processor, databases etc.

 The media selected for documentation will vary.

- The level of detail of the test document

- The experience of the testers preparing and using the

documentation

- The availability of automated test tools

Test documentation

 Standard for Software Test Documentation

- Test plan : The overall resources, test environment

scope of what is to be tested/not tested, methods

·Most organizations do

· Includes management planning information

· Covered in an overall project plan

· Skipping the test plan also works well when the test processes and

environments are stable from one software release to the next.

Test documentation

- Test design : A more detailed level of methodology

· Information for an identified subset of the overall scope

- Test cases : The actual data needed to run the test

- Test procedures : The steps for the pretest setup, test

execution, posttest activities

- Test logs : The actual test results

- Incident reports : Descriptions of test result that do not

match expectations

· Incident reports are virtually always tracked with a database.

Test documentation

- Test summary report : The pass of fail decision for

the test, the rationale for that decision, a summary of all

test results, and the detailed test results

- Test item transmittal report : An inventory of all test

documents and data being delivered as a result of a test.

Test documentation

 The documentation requirements are tailored

by individual organizations to better meet their

needs and abilities.

- To combine one or more of the documents

 The trade-offs of time-to-market vs. quality vs. completeness of the

product are discussed, and a decision is made as to what software

can go into production when.

Test management

 Includes all of the normal project management

activities for the test aspects of a project

- Estimating schedules

- Planning for staffing and training

- Identifying and planning tasks

- Monitoring the execution of the plans and replanning

based on the results

Test management

 A standard management techniques that is

particularly needed in testing is the concept of

management reserve.

- This is where a manager has resources that are available,

but held back and not allocated until something goes

wrong with the existing plans.

- Metrics and measurement programs are a useful tool

for test management.

